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Abstract: An emerging issue in neuroscience is how to identify baseline state(s) and accompanying
networks termed ‘‘resting state networks’’ (RSNs). Although independent component analysis
(ICA) in fMRI studies has elucidated synchronous spatiotemporal patterns during cognitive tasks,
less is known about the changes in EEG functional connectivity between eyes closed (EC) and eyes
open (EO) states, two traditionally used baseline indices. Here we investigated healthy subjects (n
¼ 27) in EC and EO employing a four-step analytic approach to the EEG: (1) group ICA to extract
independent components (ICs), (2) standardized low-resolution tomography analysis (sLORETA)
for cortical source localization of IC network nodes, followed by (3) graph theory for functional
connectivity estimation of epochwise IC band-power, and (4) circumscribing IC similarity measures
via hierarchical cluster analysis and multidimensional scaling (MDS). Our proof-of-concept results
on alpha-band power demonstrate five statistically clustered groups with frontal, central, parietal,
occipitotemporal, and occipital sources. Importantly, during EO compared with EC, graph analyses
revealed two salient functional networks with frontoparietal connectivity: a more medial network
with nodes in the mPFC/precuneus which overlaps with the ‘‘default-mode network’’ (DMN), and
a more lateralized network comprising the middle frontal gyrus and inferior parietal lobule, coin-
ciding with the ‘‘dorsal attention network’’ (DAN). Furthermore, a separate MDS analysis of ICs
supported the emergence of a pattern of increased proximity (shared information) between frontal
and parietal clusters specifically for the EO state. We propose that the disclosed component groups
and their source-derived EEG functional connectivity maps may be a valuable method for elucidat-
ing direct neuronal (electrophysiological) RSNs in healthy people and those suffering from brain
disorders. Hum Brain Mapp 00:000–000, 2012. VC 2012 Wiley Periodicals, Inc.

Keywords: EEG; alpha rhythm; independent component analysis (ICA); resting-state network (RSN);
functional connectivity; default mode network (DMN); dorsal attention network; multi-
dimensional scaling (MDS); standardized low-resolution tomography analysis (sLORETA)

r r

Contract grant sponsors: School of Medicine, Chang Gung
University, Department of Physical Medicine and Rehabilitation,
Chang Gung Memorial Hospital, Taiwan; Contract grant numbers:
CMRPG350813, .CMRPG350814.

*Correspondence to: Jean-Lon Chen, Department of Psychology,
Goldsmiths, University of London, New Cross, London SE14
6NW, UK. E-mail: bigmac1479@gmail.com

Received for publication 7 December 2010; Revised 4 September
2011; Accepted 5 September 2011

DOI: 10.1002/hbm.21475
Published online in Wiley Online Library (wileyonlinelibrary.
com).

VC 2012 Wiley Periodicals, Inc.



INTRODUCTION

The identification of a resting baseline state is an essen-
tial issue in neuroscience in order to interpret brain activa-
tion and to disentangle the mechanisms behind neuronal
cooperative activity, which form the core of all cognitive,
perceptive and motor-driven activities. Since its discovery
by Hans Berger in the 1930s, electroencephalography
(EEG) has been a reliable method for monitoring brain
dynamics, witnessing an early focus on the electrophysio-
logical changes from the eyes-closed (EC) to the eyes-open
(EO) resting states. This transition has traditionally been
characterized by a suppression of occipital alpha activity
via visual stimulation in the EO state, classically termed
‘‘alpha blocking’’ [Pollen and Trachtenberg, 1972], or more
recently ‘‘alpha desynchronization’’ [Klimesch et al., 2000;
Neuper and Pfurtscheller, 1992]. Both EC and EO resting
conditions, either alone or in combination, have commonly
served as a standard baseline estimate in cognitive tasks as
well as resting (or ‘‘spontaneous’’) conditions.

Modern advances in neuroimaging technology have pro-
vided new insights about the spontaneous activity of the
resting awake brain. With the use of blood oxygen level-
dependent (BOLD) functional MRI (fMRI), several resting
state networks (RSNs) and a default-mode network (DMN)
have been discovered [Gusnard and Raichle, 2001; Gusnard
et al., 2001; Raichle and Snyder, 2007; Raichle et al., 2001].
RSNs comprise clusters of brain regions involving mainly
cortical interconnection across widely distributed brain areas
[Honey et al., 2009], reflecting intrinsic functional cross-talk.
The DMN is one of the RSNs described as a task-negative
network given that it is most active during ‘‘task-free’’ condi-
tions [Biswal et al., 1995; Broyd et al., 2009; De Luca et al.,
2006; Fransson, 2006; Lowe et al., 1998; Mantini et al., 2007].
These fMRI investigations are supported by studies with
Positron Emission Tomography (PET) comparing tasks
against resting conditions with eyes closed [Fox et al., 2005;
Fransson, 2006].

Recently however, the study of RSNs has shifted its
focus from the localization of specialized brain activations
to the interpretation of interrelationships in brain dynam-
ics. In parallel, a host of EEG rhythms have been docu-
mented in the network operations of corticothalamic
systems [Steriade, 2006], where several rhythms have been
found to coexist in the same area or interact among differ-
ent structures [Steriade, 2001]. These discoveries have led
to the suggestion that the EEG could be combined with
fMRI to study baseline functions and oscillations within a
more dynamic architecture of the human brain [Gusnard
et al., 2001; Laufs, 2008; Mantini et al., 2007], by spatiotem-
porally decomposing the complex dynamics associated
with multiple EEG frequencies simultaneously [Laufs
et al., 2003a; Mantini et al., 2007].

The main advantage of EC and EO conditions is that
they may be carried out without requiring subjects to per-
form a specific task, and therefore be easily deployed in
EEG clinical settings. Barry et al. examined the possible

arousal and topography differences during the transition
from EC to EO conditions in adults [Barry et al., 2007] and
children [Barry et al., 2009]. These were associated with sig-
nificant reductions in mean activity in the delta, theta, and
alpha bands whilst accompanied by increased beta activity
in frontal hemispheric regions. Others such as Chen et al.
[2008] have used scalp EEG spectral regional field power to
study the distribution of RSN activity at rest. The possibility
still exists that the frequent disparities between EEG and
fMRI studies may be due to the well-known inadequacy of
conventional scalp recordings to resolve EEG source loca-
tions, for scalp voltage is a mixture of underlying source ac-
tivity and volume conduction [Congedo et al., 2008; Nunez,
1987; Nunez et al., 1997; Winter et al., 2007].

As a potential solution, an approach termed Blind
Source Separation (BSS) has been developed, originating
from the engineering field of signal processing [Bell and
Sejnowski, 1995; Comon, 1994; Hyvarinen, 2000]. Inde-
pendent component analysis (ICA) is a special case of BSS
methods that has been applied to EEG and fMRI data
[Calhoun et al., 2001, 2004; Makeig, 1996; Makeig et al.,
2002] as a tool to remove artifacts [e.g. Jung et al., 2000]
and to separate physiological sources [e.g. Makeig et al.,
2004]. One of the advantages of ICA is that individual-sub-
ject EEG epochs (or fMRI voxels) can be concatenated
across subjects along the time axis to apply the ICA algo-
rithm to group data [e.g. Calhoun et al., 2001, 2004].

Therefore, we propose here to utilize group-ICA as a
valid approach to decompose resting EEG signals into a
number of independent components (ICs). Then, using an
inverse localization tool such as sLORETA, the cortical loca-
tion of these ICs may be resolved into spatially well-defined
nodes or ‘‘sources’’ [Pascual-Marqui et al. 2002]. Finally,
through estimation of the cross-correlation of spectral power
between different ICs within subjects, a functional relation-
ship between such EEG source ‘‘nodes’’ can be established,
analogous to approaches that have been adopted to calculate
functional connectivity from BOLD signal strength in fMRI
data [e.g. Buckner et al. 2009].

In summary, our results on dynamic changes in alpha-
band connectivity between EC and EO demonstrate the
feasibility of studying neuronal resting-state networks
according to the existence of functional relationships
between ICA components in EEG data. We also replicate
the previously reported spectral power changes in alpha
band power from the EC to the EO state.

MATERIALS AND METHODS

Participants

Participants were 27 healthy volunteers from Goldsmiths,
University of London (20 females and 7 males) with ages
ranging from 18 to 30 years, mean ¼ 22.5. All subjects had
normal hearing and normal or corrected-to-normal vision
and were not receiving psychoactive medication. Subjects
were excluded if they had any history of epilepsy, drug
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abuse, or head injury. They were recruited by advertise-
ment and signed an informed consent form before the start
of the experiment in accordance with the Helsinki Declara-
tion. The current investigation received ethical approval
from the College Research Ethics Committee.

Experimental Design

Each subject was asked to sit in an armchair in a quiet
room with stable temperature and shaded daylight. The
experiment began with a 3-min EC condition, followed by
3 min with EO. Each subject was given instructions to stay
fully relaxed without eye movements to avoid motion arti-
facts in the eyes-closed condition. During the EO condi-
tion, participants were instructed to visually fixate on a
small cross presented on a table below eye level in front of
them, in order to reduce blinking and lateral eye move-
ment artifacts.

Independent Component (ICA) and Spectral

Power Analysis

The general scheme of this approach is illustrated in Fig-
ure 1. Artifact-free EEG epochs from all subjects in the EC
and EO conditions were concatenated into one file, which
was then decomposed into independent sources by the
group ICA procedure [Jung, 2001; Makeig, 1996] using
WinEEG 2.83 software (Mitsar, Ltd.; available at: http://
www.mitsar-medical.com), which uses the Infomax ICA
algorithm [Bell and Sejnowski, 1995]. Here, a temporal
concatenation approach allows for unique time-courses for
each subject, but assumes common group maps across
conditions [Calhoun et al., 2001]. Theoretically, ICA is able
to separate N source components from N channels of EEG
signals in each subject. This is represented by the rows of
an inverse unmixing matrix, W in u ¼ Wx, where u is the
source matrix and x is the scalp-recorded EEG. The time-
courses of the sources are assumed to be statistically inde-
pendent. Then, for each subject, epochwise spectral power
of the back-reconstructed ICs was computed by short-time

Figure 1.

Schematic representation of the different pipeline steps from

(A) raw EEG to epoched-EEG recordings, from a single subject’s

EEG, (B) EEG concatenation and decomposition using Infomax

ICA and artefact rejection, which excludes large amplitudes

from muscular activity and eye-blinking, (C) the construction of

mean power spectra of each valid independent component (IC)

and its topography. (D) General schema of deriving the alpha

power correlation matrices from back-reconstructed Fourier

spectra of all ICs to estimate functional connectivity in both EC

and EO states. Then, three-dimensional cortical images are pre-

sented for visualizing related ICs within the cortical source-level

map.

r ICA-Derived EEG Functional Connectivity r

r 3 r



Figure 2.
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Fourier Transform (STFT) across the EO and EC conditions
(4-s epochs with a 50% overlapping Hanning time win-
dow). As may be seen in Figure 1C, the predominant fre-
quency of ICs is alpha (8–12 Hz) in almost 70% or 9 ICs/
13 ICs. Subsequently, for each resting condition and within
each subject, we specifically cross-correlated the alpha-
band (8–12 Hz) epochwise powers between all 13 ICs,
yielding a square 13 � 13 connectivity matrix. Individual
connectivity matrix r2 values were then averaged across
subjects to give a group-wise matrix for each resting condi-
tion. Through this time-frequency analysis we were able to
show that several grouped components exhibit strong cou-
pling with alpha-frequency dynamics in the resting state.

EEG Recording and Preprocessing of EEG

Scalp voltages were recorded using a 19 Ag/AgCl elec-
trode cap according to the 10 to 20 international system:
Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz,
P4, T6, O1, O2 (Electro-cap International, Inc.; available at:
http://www.electro-cap.com). The ground electrode was
placed on the scalp, at a site equidistant between Fpz and
Fz. Electrodes were referenced to linked earlobes, and
then the common average reference was calculated offline
before further analysis. Electro-oculogram (EOG) data
were recorded from electrodes (Fp1/2) placed to monitor
eye movements and eye blinking. Electrical signals were
amplified with the Mitsar 21-channel EEG system (Mitsar-
201, CE0537, Mitsar, Ltd.; available at: http://www.
mitsar-medical.com) and electrode impedance was kept
under 5 KX. The EEG was recorded continuously, digi-
tized at a sampling rate of 250 Hz, and stored on hard
disk for offline analyses. EEG data were filtered with a 0.5
to 60 Hz bandpass filter offline [e.g. Mantini et al., 2007].
Artifact rejection methods consisted of the exclusion of
epochs with large amplitudes (over �80 lV), eye-blinking,
DC bias, physiologically unresolveable noise [Onton et al.,
2006], muscular activity of frontal muscles defined by fast
activity over 20 Hz [Shackman et al., 2009], and slow eye
movements coincident with the EOG [c.f. Viola et al., 2009].
Moreover, it has been shown that ICA itself is capable of
reliably separating blinking, such as blinking and lateral
eye movement [e.g. Jung et al., 2000]. In general, each 3 mi-
nute resting-state period of EEG was analyzed in 4-s epochs
(50% overlapping with Hanning time window), resulting in
89 epochs. On average around 60 to 70 valid epochs with-
out artifacts from each of the 27 subjects were analyzed.

ICA decomposition yielded a total of 19 ICs, from which
epochwise spectral power analysis was applied to 13 physi-
ologically-relevant ICs (recognised as non-artifactual and
with high single-dipole fit) to examine the dynamics of
EEG-alpha power from the EC to EO state. This evaluation
allowed a more direct comparison of the present results
with previous literature [for a review see Klimesch, 1999].

Source Localization Analysis

sLORETA (standardized low-resolution brain electro-
magnetic tomography) analysis was performed on scalp
maps of selected ICA components to find the maximal
densities of their cortical sources [Pascual-Marqui et al.,
2002]. sLORETA imaging provided source computations
for the ICs using software provided from the Key Institute
for Brain-Mind Research in Zurich, Switzerland (available
at: http://www.uzh.ch/keyinst/loreta.htm). sLORETA is
an inverse solution technique that estimates the distribu-
tion of the electrical neuronal activity in three-dimensional
space. Specifically, sLORETA computes three-dimensional
linear solutions for the EEG inverse problem within a head
model co-registered to the Talairach probability brain atlas
[Talairach, 1988] and viewed within MNI (Montreal Neuro-
logical Institute) 152 coordinates at 5 mm resolution. Valid
ICA components were defined by their single dipole fitting
having satisfactory relative residual energy below 10% [e.g.
Grin-Yatsenko et al., 2010], meaning that over 90% of the
component’s power may be represented by a single dipole
and indicating each was clearly generated by a strong
locally circumscribed cortical source (Fig. 2).

Computation of Mean Regional Correlation

Matrix and Graph Analysis

According to graph theory, and within any chosen fre-
quency information exchange may be measured by the
(nonrandom) cross-correlation coefficients in the band-
power spectrum, reflecting functional connectivity. Graph
theory defines a graph as a set of nodes (in this study,
ICs) and edges (connections between nodes) [Bullmore
and Sporns, 2009; Rubinov and Sporns, 2010]. Within each
subject, ICs were cross-correlated region by region according
to their alpha-power across epochs during the full length of
two resting time series (more than 60 epochs in each), thus
creating two square correlation matrices in the EC and
EO states, respectively. The individual within-subject

Figure 2.

The topographies, power spectra, and source localization of 13

independent components (ICs) in the EO and EC states. For

cortical localization of generators the sLORETA equivalent

source current density (5 mm resolution) for each extracted IC

was estimated using component topographies as input data

[Pascual-Marqui, 2002]. For each IC, its spectral power (left

panel, EC vs. EO state, same scale for all ICs), scalp topography

(middle panel), and three-dimensional spatial maps (right panel)

are illustrated.
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connectivity matrix r2 values were then averaged across sub-
jects to give a group-wise matrix for each resting state. We
then performed one-sample t-tests (two-tailed) on the Fish-
er’s r to Z-transformed (normally distributed) correlation
coefficients to test whether they were significantly differ-
ent from zero [Salvador et al., 2005]. To account for multi-
ple comparisons, Bonferroni’s correction was applied to
eliminate false-positive errors (P ¼ 0.01/78 connections ¼
0.000128), and statistically significant results with P values
<0.000128 were accepted as significant. All graph analysis
calculations were performed in Matlab 7.04 (Mathworks,
MA). This allowed the computation of weighted undir-
ected graphs (Fig. 3).

Clustering of ICA Components

The goal of IC clustering is in order to group together
highly similar activity from multiple subjects in order to
express their characteristic activities. Alpha desynchronisa-

tion upon visual input from EC to EO is generally consid-
ered to reflect activation of the entire cortex [Schurmann
and Basar, 1999]. Therefore, in order to extend the ICA
analysis from single to multicomponent dynamics, the esti-
mated components were clustered according to mutual

similarities in their EEG alpha-power correlation coeffi-
cients. A variety of frameworks has been used to summa-
rize relevant components at the group level in fMRI

Figure 3.

Resting-state functional connections revealed by EEG-alpha

power spectra, compared between EC and EO states. (A) Signifi-

cantly enhanced connections of DAN between frontal and parietal

regions (anterior to posterior) are demonstrated during the EO

state, compared to the EC state. The significantly enhanced con-

nections in the EO state (75%) are depicted, more than those

connections in the EC state (50%). (B) Statistically significant con-

nections of DMN, DAN, and visual networks are depicted by top

15%, 10%, 8% pairs of z scores, compared EO with EC state

(two-tailed t-tests, Bonferroni corrected). Visual networks are

enhanced in the parietal, occipital, and occipitotemporal regions

in the EO state. Increased connection strength between medial

prefrontal cortex and precuneus regions, strong DMN in the EO

state, is still noted in line with Yan et al. [2009]. The significantly

decreased functional connectivity among left precentral, right pre-

central, and cuneus from EC to EO state ensures that the

improvement of intrinsic networks’ activity does not come from

the general improved signal-to-noise ratio between states.
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studies [Esposito et al., 2005; Jann et al., 2009; Mantini et al.,

2007]. In this study, in order to circumscribe the alpha
power-associated components, agglomerative hierarchical
cluster analysis was performed on the components’ alpha
power correlation coefficients with the statistical software
package, SPSS (SPSS Inc, Chicago). Each component measure

was normalized by Z-transformation prior to cluster analysis.
Then, to assess mutual similarity, all pairs of components
were compared by calculating the Pearson correlation of their
alpha power, and classified into a hierarchical cluster tree

according to their proximity (dendrogram). A dendrogram
consists of mirrored C-shape lines, where the length of the
mirrored C indicates the distance between objects (compo-
nents). To calculate the distance between clusters, the
Average Linkage method (Pearson correlation) was used.

Here a ‘‘distance’’ matrix was calculated, namely the-
Euclidean distances in the original space of the components
using multidimensional scaling (MDS) in order to fit an opti-
mal configuration of groups of components in a two-dimen-
sional space by minimizing the mismatch of the distances

between the components in the MDS plot [Esposito et al.,
2005; Torgerson, 1952]. From these components five groups
were qualitatively selected by the similarity matrix, the den-
drogram, the MDS plot, and visual inspection, as anatomi-
cally relevant areas across subjects, potentially depicting

functionally related groups in the EC and EO resting states.

RESULTS

Alpha-Band Power Cortical Sources (ICA)

As illustrated in Figure 1, Infomax ICA was applied to
extract ICs from the concatenated EEG data of the 27 partic-
ipants in both EC and EO states. The EEG data was decom-
posed into 13 spatially fixed and maximally-ICs. Only six
artifact ICs were excluded (horizontal and vertical eye

movements � 2, temporal muscle artifacts � 2, and ICs
with unspecific muscle artifacts � 2). Our results in each
resting state were calculated using more than 60 epochs in
each condition for each subject. All components in EC/EO
states (Fig. 2) exhibited a high repeatability across subjects
with strong cortical source locations. Moreover, we suggest
that the consistency in the cortical localization of compo-
nents in healthy individuals in both EC and EO states is
due to the absence of experimental stimuli [for review see
Onton et al., 2006], although some unsuccessfully repre-
sented artifact components may always be caused by partic-
ipant confounds such as drowsiness, muscle activity, or eye
movements. The cortical location and Brodmann area num-
ber of source locations of each IC are illustrated in Figure 2.
The Talairach coordinates are further listed in Table I.

Functional Connectivity (Graph Analysis)

In accordance with the traditional graph theoretical
approach, the square correlation matrix was used, to create
weighted undirected binary graph such that nodes (ICs)
were either connected or not connected. The distribution
of r-values suggested significantly enhanced connections
in the EO state (75%) compared with those in the EC state
(50%, in Fig. 3A). For the EO to EC state contrast (two-
tailed t-tests, Bonferroni corrected) the top 8% of all possi-
ble connections, were defined by Fisher’s z > 6.24, P <
0.01 [e.g. Dosenbach et al., 2007].

By lowering the graph definition threshold more poten-
tial connection patterns to other parts of the brain were
revealed, indicating that the findings were robust to small
changes in the graph-definition threshold. Hence for visu-
alization purposes, we made the z-score threshold vary
from the top 8% to 15% of all interregional correlations (top
15% of all possible compared connections, z > 4.35, P <
0.01). Figure 3A,B illustrate the top 15% z-score pairs for
the functional connections between cortical nodes.

TABLE I. Coordinates of the main ICs of the circumscribed groups in the resting state, as shown in Fig. 2, the

stereotactic space of Talairach and Tournoux [1988]

Group x y z Brodmann area Anatomical region

Group F 5 63 �7 BA10 Superior frontal gyrus
�40 45 25 BA10 Middle frontal gyrus
40 45 25 BA10 Middle frontal gyrus
�5 51 39 BA8 Medial frontal gyrus

Group C �59 �3 32 BA6 Precentral gyrus
50 �8 37 BA6 Precentral gyrus

Group P �40 �47 39 BA40 Inferior parietal lobule
�5 �60 63 BA7 Precuneus, parietal lobe
40 �51 49 BA40 Inferior parietal lobule

Group OT 54 �62 22 BA39 Superior temporal gyrus
�54 �62 22 BA39 Superior temporal gyrus

Group O 5 �87 14 BA18 Cuneus, occipital lobe
�20 �96 14 BA19 Middle occipital gyrus

Brain regions are identified by putative Brodmann area (BA). Group F, C, P, OT, O, and mean the circumscribed frontal, central, parie-
tal, occipitotemporal, and occipital components.
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Significant correlations occurred (1) intrahemispherically in
the EO state superior to the EC state (right BA40-BA8, z >
5.31, P < 0.01; right BA4-BA8, z > 6.24, P < 0.01); (2) interhe-
mispherically between homologous region pairs (precentral
BA4, z < �6.05, P < 0.01, in the EO state inferior to the EC
state); and (3) interhemispherically between nonhomologous
regions (left frontal BA8-right parietal BA40, z > 4.35, P <
0.01; left precentral BA4-right parietal BA40, z > 5.31, P <
0.01) in the EO state superior to the EC state. In other words,
within-DAN correlations were generally greater than other
cross-network correlations in the EO condition. Thus, DAN
is always at least partially engaged and intrahemispheric
connectivities become as strong as interhemispheric ones
when the eyes are open. Furthermore, comparing functional
connectivity value pairs revealed a significant between-con-
dition difference within the midline connectivity of the
DMN, specifically between medial prefrontal cortex (mPFC)
and precuneus (medial frontal BA 8-precuneus BA7, z > 4.35,
P < 0.01, Fig. 3B).

Figure 4 depicts these nodes within RSNs related in
recent fMRI studies, including the primary sensorimotor
network, the primary visual and extra-striate visual net-
work, left and right lateralized networks consisting of
superior parietal and superior frontal regions (DAN,
reported as one single inset) as well as the so-called
default mode network (DMN) consisting of precuneus,
medial frontal, and inferior parietal cortical regions.

Resting-State Clusters With Well-Defined

Functional-Anatomical Regions

(Dendrogram Analysis)

Hierarchical cluster analysis of cross-correlations
between alpha power ICs identified a consistent set of five

spatiotemporally distinct groups from 27 subjects in each
resting condition, in line with resting state networks dis-
closed by fMRI studies [van den Heuvel and Hulshoff
Pol, 2010; Toro et al., 2008]. Importantly, the five
grouped-ICs were explained by the correlation coefficient
in each clustered group (P < 0.0005, corrected), and
may be considered as a good signature of the resting
EEG in both EC and EO states. This is represented by
the dendrogram plots in Figure 5, revealing distinct
grouping patterns for components in both EC and EO
states. Five groups were thus classified on the basis of
coordinates in Talairach space and by regional anatomy
(see also Table I):

1. Frontal group (F): a network involving predominantly
lateral and middle prefrontal cortices, as well as the
anterior pole of the prefrontal lobe.

2. Central group (C): a lateral network involving the pre-
central gyri.

3. Parietal group (P): a posterior-lateral and midline net-
work involving primarily the parietal regions.

4. Occipitotemporal group (OT): a lateral network domi-
nated by the bilateral middle temporal cortices in the
occipitotemporal regions.

5. Occipital group (O): a posterior network involving
predominantly the occipital cortex.

All of the group spatial maps were found in both EC
and EO states. As illustrated in Figure 4, our results are
consistent with fMRI resting-state network (RSN) reports
of regions showing functional connectivity patterns across
resting states [Fox et al., 2005; Fransson, 2005; Yan et al.,
2009] as well as strong anatomical connectivities [Honey
et al., 2007, 2009].

Figure 4.

Resting-state functional connections revealed by EEG-alpha power spectra, compared with other

fMRI-RSN reports. The illustrated cortical node locations and their membership(s) within previ-

ously identified resting-state networks with fMRI are presented together with the results of the

current study [Beckmann et al., 2005; Biswal et al., 1995; Damoiseaux et al., 2006; De Luca

et al., 2006; Salvador et al., 2005; Van den Heuvel et al., 2008].
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In addition, the dorsal attention network (DAN) most
evident in the frontal and parietal groups in the EO state,
rather than the EC state, depicted by the dendrogram
(Fig. 5). This effect is reinforced by the observation of
enhanced correlation between nodes belonging to Groups
F, C and P in the functional connectivity correlation matrix
for the EO compared to EC condition (Fig. 6).

Functional Clustering Changes Between EC and

EO States (Multidimensional Scaling Analysis)

Here, the functional distances between IC groups within the

two conditions were represented by graphical distances in

two-dimensional space, as depicted in Figure 7. Multidi-

mensional-scaling (MDS) provides an interpretable map of

Figure 5.

The Dendrogram was performed to illustrate the grouping of

the 13 ICs, suggested by Pearson correlations (r values) of alpha

power spectra (from 1581 epoches) among all ICs; (A) in the EO

condition and (B) in the EC condition (EC, eyes-closed; EO, eyes-

open; BA, brain regions are identified by putative Brodmann area;

vertical blue-dot lines, instruction lines to help illustrate five groups

according to the dendrogram and similarity; horizontal blue-dot

lines, lines to help differentiate the dorsal attention network from

the visual system in both states; red lines, indicating the distance

(relationship) between the frontal and parietal groups).
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the relations between all ICs whose similarity has been

determined by Pearson correlations (r values) and whose IC

group membership was revealed by dendrogram cluster

analysis (Fig. 5). Hence, corepresentation of the clustered

ICs’ group membership may aid in highlighting differences

in functional associations from EC to EO states on a network

level. Here, functionally similar IC components, represented

by topographical icons, are plotted in closer proximity

within the MDS plot (Fig. 7). This analysis confirms many of

the organizational features already highlighted in Figure 5

with symmetrically paired regions in cortical space, reflect-

ing anatomical relations and functional similarity among

the five principal IC groups (Table I). In accordance with

some prior studies reporting stronger alpha-band similar-

ities posteriorly rather than anteriorly in the EC condition

[Barry et al., 2007; Chorlian et al., 2009], the components

within Group F were more segregated than those in Group

P and Group OT (Fig. 7). Moreover, comparing the relation-

ship between Groups F and P in the EC versus EO condi-

tions, the closer distance between the two groups in the

MDS plot in the EO state suggests tighter coupling within

the DAN [e.g. Mantini et al., 2007].

DISCUSSION

To our knowledge, this is the first study to combine
EEG-ICA and graph theory to investigate spectral power
functional connectivity of cortically localized sources from
the eyes-closed to the eyes-open state. Although blind

source separation (BSS) methods have been exploited to
analyze resting-state EEG activity in healthy subjects
[Chen et al., 2008; Congedo et al., 2010; Gomez-Herrero
et al., 2008; Scheeringa et al., 2008], and in those with clini-
cal disorders [Chen et al., 2009; De Vico Fallani et al.,

Figure 6.

Illustrative functional connectivity correlation matrices from the

EC to EO state. Functional connectivity correlation matrix

(unweighted undirected network) represents the cross-correla-

tion of the independent component (IC) pairs for alpha-band

spectral power, significant threshold, and arranged by the similar-

ity among components. Green boxes depict circumscribed IC

groups according to their significant functional connectivity (r >

0.50, P < 0.01 corrected), please refer to the dendrogram and

MDS plots (Figs. 5 and 7). The yellow box indicates enhanced

correlation of the Group F, C, and P in the dorsal attention net-

work (DAN) during the EO condition (F: frontal, C: central, P:

parietal, OT: occipitotemporal, O: occipital; r: Pearson’s correla-

tion coefficient).

Figure 7.

The Euclidean distances matrix of the 13 ICs in the resting state

was visualized in a two-dimensional space using multidimensional

scaling (MDS). Five groups (frontal, central, parietal, occipital,

and occipitotemporal groups) were presented by five different

color according to the dendrogram and Pearson correlations of

13 ICs (please see Fig. 5). The distance between groups shows

their relationship, and the connectivity of frontal and parietal

groups is increased from EC to EO state, and the same as the

visual system (occipital and occipitotemporal groups).
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2007; Grin-Yatsenko et al., 2010], the present study demon-
strates the feasibility and potential of using spectral analy-
sis of ICA components to estimate EEG resting-state
connectivity by representing the spatially-segregated,
unmixed EEG sources as functional nodes within electro-
cortical networks, in accordance with graph theory [Bull-
more and Sporns, 2009]. Compared with previous source-
space attempts to provide a global pattern of electrocorti-
cal connectivity, our multistep approach effectively inte-
grates information about functional interactions and
provides a parsimonious procedure to describe dynamic
state-changes in EEG resting-state networks (RSNs). Our
principal findings indicate there is an increase in func-
tional connectivity from EC to EO states, particularly
between posterior and anterior regions, and that the
electrophysiological network of the resting brain (without
stimulation or task) is composed of five well-defined
clusters of EEG activity: frontal, central, parietal, occipito-
temporal, and occipital. Moreover, the alpha-band topo-
graphical maps and connectivity patterns are consistent
with the estimated resting patterns from previous fMRI-
RSN studies, such as the default-mode network (DMN)
and dorsal attention network (DAN) [for a review see
Toro et al., 2008; van den Heuvel and Hulshoff Pol, 2010].
In addition, the occipital group (O) and the occipitotempo-
ral group (OT) appear similar to the reported primary vis-
ual and extra-striate visual networks. Given that cortical
localization of ICA components and connectivity maps ex-
hibit a high degree of consistency in spatial and frequency
parameters within and between subjects during rest [e.g.
van de Ven et al., 2004], it may be beneficial to implement
this EEG-ICA functional connectivity approach to clinical
populations during resting-state baseline recordings.

Functional Connectivity Changes From EC to EO

Interhemispheric connectivity varied both as a function
of the resting state (from EC to EO) and cortical areas.
During the EC state, we observed that alpha power-
associated correlations of spatially localized sources con-
veyed a preferred interhemispheric direction (Fig. 3A, the
EC state). Moreover, these alpha power-related associa-
tions showed a more distinct posterior than anterior focus
[e.g. Chorlian et al., 2009]. Given that prior published
fMRI–RSN studies revealed significant patterns of corre-
lated spontaneous activity between homologous regions in
opposite hemispheres [e.g. Fair et al., 2008; Salvador et al.,
2005], the corpus callosum could act as the major conduit
for information transfer between the cerebral hemispheres
[Innocenti, 1994; Rosas et al., 2010]. In addition, connectiv-
ity strength emerged more significantly between posterior
regions within the left hemisphere (left temporoparietal
junction (TPJ), BAs 39/40) than between regions in the
right hemisphere (Fig. 3A). In line with traditional find-
ings, increased communication within the left TPJ may be
reflective of a lateralized language processing network

[Hutsler and Galuske, 2003]. This feature has also been
reported in spontaneous MEG activity of brain networks,
indicating that coupling of spontaneous oscillations occurs
predominantly within the left intrahemispheric parietal
pathway [de Pasquale et al., 2010]. While most cortical sour-
ces manifested interhemispheric connections in the EC state
between bilateral homologous regions, in the EO state signif-
icant correlations emerged most frequently intrahemispheri-
cally, demonstrated by the increased dynamic linkage
between ipsilateral frontal and parietal regions (Fig. 3A, the
EO state). Here, the frontal sources (F) were localized to
Brodmann areas (BA) 8 and 10 (medial, right, and left mid-
dle frontal gyri), while the parietal sources (P) consisted of
BA 7 and BA 40 (precuneus, right, and left inferior parietal
lobules).

Importantly, the dorsal attention network (DAN) and
default-mode network (DMN) appeared to become more
prominent in the EO state (Fig. 3B, EO > EC). This obser-
vation is directly in line with reports of increased fMRI
coupling between medial prefrontal cortex and precuneus
(BA7) in the EO versus EC condition [Yan et al., 2009],
and multimodal associations between alpha-power fluctua-
tions and DMN activity [Ben-Simon et al., 2008, Jann et al.,
2010; Mantini et al., 2007]. Amongst others, these RSNs
have been reported in the work by Biswal et al. [1995],
Beckmann et al. [2005], De Luca et al. [2006], Damoiseaux
et al. [2006], and Salvador et al. [2005] (Fig. 4). Although
the aforementioned studies made use of different groups
of subjects, methods (e.g. seed, ICA, or clustering) and
MRI acquisition protocols, they coincide with the EEG-
based results of the present study, suggesting the robust
formation of functionally and consistently linked networks
in the brain during resting conditions.

Neurophysiological Implications of the Five

Functionally Clustered Groups

Although the RSN and DMN concepts have come from
important fMRI-BOLD evidence demonstrating consistent
activation patterns across distinct brain regions [Greicius
et al., 2003; Raichle et al., 2001], it is as yet unclear how
these relate to the concurrent coupling and degree of neu-
ronal activity [Debener et al., 2006]. In contrast, EEG has
excellent temporal resolution and is a direct electrophysio-
logical correlate of spontaneous and task-related neuronal
activity. ICA has been extensively used for the analysis of
electromagnetic brain signals [James and Hesse, 2005; Vig-
ario and Oja, 2000], and provides a statistical estimation of
maximally independent EEG sources. Several earlier studies
have demonstrated the application of ICA to multichannel
EEG data for distinguishing artifacts and functional brain
sources [e.g. Jung et al., 2000; Makeig et al., 2004; Marco-
Pallares et al., 2005]. Interestingly, about 20% of all grey
matter neurons, nonpyramidal type, express metabolic ac-
tivity well reflected in the BOLD signal, but not in the EEG
[Broyd et al., 2009]. To solve the problem originating from a
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degree of incongruence between hemodynamic and electro-
physiological signals, more recent research has tried com-
bining different modalities, such as EEG-fMRI, to better
understand which portions of BOLD activity are reflected
in the EEG [Jann et al., 2009; Mantini et al., 2007]. Here we
examined directly the spatial characteristics of the five hier-
archically clustered groups based on the EEG alpha-band
spectral power of each IC, with the aim of validating this
approach in relation to previous reports of EEG and fMRI
default patterns.

An important question is whether these groups directly
reflect anatomical connectivity. We selected the alpha
rhythm, the most prominent EEG rhythm during the con-
scious resting state, as the basis of the ICA-based EEG cluster
groups. In previous reports [Barry et al., 2005, 2007; Chen
et al., 2008] the distribution of scalp EEG power in relation to
anatomical sources within the RSN was unresolved due to
the masking of underlying source activity through volume
conduction [Nunez and Srinivasan, 2006]. Compared with
blood-oxygenation level fMRI recordings, our combined ICA
and sLORETA based results suggest an electrophysiological,
and therefore neuronal, functional connectivity amongst
well-specified anatomical regions.

Visual versus parietal system

A good example is the separation of the dorsal parietal
cluster (Group P, parietal clustered group in both EC and
EO) from the rest of the visual system (Group O and
Group OT, in Table I and Fig. 5) [De Luca et al., 2006;
Gusnard et al., 2001; Mantini et al., 2007]. The visual sys-
tem is organized into two parallel anatomical pathways—
the dorsal (occipitoparietal) pathway related to spatial
vision and visually guided actions, and the ventral (occipi-
totemporal) pathway associated with identification of vis-
ual objects [Corbetta and Shulman, 2002; Sereno et al.,
2001]. Interestingly these three groups are shown to be
separated by alpha power-associated IC clustering, com-
pared to similar results of correlations between EEG
rhythms and fMRI RSNs reported by Mantini et al. in
2007, and a weak interaction between two EEG-alpha gen-
erators (precuneus and cuneus) found by Gomez-Herrero
et al. [2008].

Frontal and parietal subdivisions

Previous work has shown that the DMN can be divided
into at least two subnetworks, with anterior and posterior
(frontal and parietal) subdivisions [Damoiseaux et al.,
2006; Kiviniemi et al., 2009]. Similarly, based on cluster
analyses of alpha power-associated ICs, we were also able
to demonstrate a parietal sub-network (Group P in Table I
and Fig. 5) and a frontal sub-network (Group F in Table I
and Fig. 5). Crucially, during EEG-fMRI coregistration,
Mantini et al. [2007] observed that both the DMN and the
dorsal attention network (DAN) were coupled to changes
in EEG power. The DMN and DAN are two of the most

robust and well-studied RSNs, and are associated with
task-negative and task-positive functions, respectively
[Shulman et al., 1997]. Earlier reports have suggested that
default and attention networks show considerable correla-
tion with EEG-alpha band power [Laufs et al., 2003a,b). In
particular, a study of the temporal dynamics of spontane-
ous MEG activity has also demonstrated strong correla-
tions in the alpha-band in both the DAN and the DMN
[de Pasquale et al., 2010]. The results of the present study
underline the prominence of the DMN and DAN particu-
larly in the EO state, and our findings of relevant circum-
scribed regions are consistent with the idea that the DAN
as well as the DMN appear to exhibit more functional cou-
pling during the EO versus EC condition; the DMN being
characterized by increased connection strength between
medial prefrontal cortex (MPFC) and precuneus (PCu)
regions (Figs. 3B and 4), in line with Yan et al. [2009].

Group Interactions Visualized With

Multidimensional Scaling (MDS)

By way of a two-dimensional plot, the MDS method
facilitates visualizing the similarity matrices of the alpha
power-associated correlation coefficients and the proximity
of the EEG components. During the shift from EC to EO,
the frontal and parietal clusters appear to become closer in
the EO state, suggesting more tightly coupled activities
among the regions of both the DAN and DMN, potentially
to increase contextual integration and evaluation of visual
information [Hamzei et al., 2002; Mason et al., 2007; Yan
et al., 2009]. Interestingly, we also discovered a number of
symmetrical interhemispheric connections that were stron-
ger than would be predicted by the anatomical distance
between bilaterally homologous regions in both EC and
EO states [Salvador et al., 2005]; for example the coupling
between left and right occipitotemporal areas (BA 39; Figs.
3A and 5). Another example is the visual system in the
MDS plot (Fig. 7). The distance from the occipital group
(Group O) to the parietal group (Group P) was approxi-
mately similar to the distance from the occipital group to
the occipitotemporal group (Group OT) in the EC state,
suggesting a similar strength of coupling of the two paral-
lel visual pathways in keeping with the relatively more
inactivated visual cortex. In contrast, in EO with fixation
(Fig. 7), the components of occipital and occipitotemporal
groups move more closely, respectively, showing
increased functional connectivity (Fig. 3B), but not with
the parietal group, suggesting a more pronounced cou-
pling of the prevalent ventral pathway, putatively acti-
vated during visual object detection (a cross presented in
the EO fixation condition), rather than the dorsal pathway
which is used during visually guided actions [e.g. e.g.
Virji-Babul et al., 2007]. Together, this is consistent with
reports that the oculomotor and attentional systems appear
to be activated upon eyes opening, showing an ‘‘exterocep-
tive mental state,’’ as indicated by Marx et al. [2003] in an
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fMRI study. On the other hand, it is evident that the sen-
sorimotor group (Group C) remained closer to the occipital
group in the EC state (Figs. 5B and 7), possibly reflecting
stronger coactivation of the visual and somatosensory sys-
tems in the ‘‘interoceptive mental state’’ with eyes closed,
and characterized by imagination and sensory activity
[Marx et al., 2003].

Methodological Limitations

The principal drawback of the present study was the
use of a limited number of electrodes. Although the results
found with the ICA-sLORETA method seem encouraging,
they could be refined with the use of a greater number of
electrodes (given that the number of resolved ICs is
numerically equal to the number of recording electrodes
used). There is a limit to this nevertheless, since owing to
volume conduction, high-density EEG channels close to
each other tend to be increasingly influenced by activity
from similar brain regions. Nevertheless, volume conduc-
tion is a widely recognized problem that pervades almost
all functional connectivity analyses of the EEG. In this
case, EEG signal changes occurring at one location may
‘‘spread’’ and be detected at another, and thus be (errone-
ously) interpreted as evidence of altered synchrony between
locations (sensors). One proposed workaround has been to
utilize strictly phase-lagged signals in connectivity analy-
ses (given that volume conduction is instantaneous) [Stam
et al., 2007]. However, this may also run the risk of
‘‘throwing the baby out with the bathwater,’’ as there is
evidence that considerable cortico-cortical coupling occurs
with zero phase-lag in the brain, independent of volume
conduction [Gollo et al., 2011; Roelfsema et al., 1997]. In
this study we have proposed an alternative approach in
the frequency-domain which, although phase-insensitive,
explicitly defines independent ‘‘sources’’ (ICs) of EEG ac-
tivity. Here, the time-course of each IC is defined individ-
ually from the source-space matrix, thereby minimizing
the source ‘‘spread’’ which manifests itself in sensor-space.
Moreover, since ICA was performed before frequency-do-
main transformation, it would be comparatively easy to
translate this processing pipeline to phase-sensitive meas-
ures (such as phase synchrony) by likewise taking advant-
age of maximal signal independence in ICA source-space.
Importantly, ICA source-space is qualitatively different
from the source-space of inverse-source localization meth-
ods (minimum-norm or dipole-fitting methods). The latter
may be envisaged as computing ‘‘virtually implanted elec-
trodes,’’ which can detect distinct but potentially spatio-
temporally overlapping activities within the same
anatomical location. ICA, in contrast, employs higher-
order statistical methods to linearly unmix the sources in
the signal a priori, which may be followed by a subse-
quent step of cortical source localization (e.g. sLORETA).
This may be additionally useful in view of the fact that
volume conduction is expressed through linear summation

of the signal. On the other hand the principal limitation of
ICA is that it is designed to separate mixtures of princi-
pally non-Gaussian activities. In this respect, we tested an
alternative approach of performing ICA on prefiltered
alpha-band data; however, this approach yielded a lower
number of valid extracted cerebral components (about 50%
less), many of which had high residual variance, indicat-
ing poor localization of electrocortical activity. We specu-
late that this may be due to the fact that the standalone
alpha rhythm has been reported to have near-Gaussian
properties [Dick and Vaughn, 1970]. Nevertheless, patches
of cortex that generate the EEG naturally oscillate at multi-
ple frequencies simultaneously (frequency nesting) and
ICA is apparently able to best estimate the maximal inde-
pendence of EEG generators according to a wider distribu-
tion of frequencies; thus our original pipeline retains the
property of being physiologically realistic. Almost all pre-
vious EEG studies have traditionally applied ICA on
broadband data before filtration to individual frequencies
of interest [Chen et al., 2009; Grin-Yatsenko et al., 2010].

Notwithstanding, the most obvious limitation may be
the cortical nature of the EEG signal itself, which reflects
widespread synchrony of pyramidal neurons in cortical
grey matter, and is more problematic for resolving activity
from deeper brain structures, as can be done with fMRI.
Therefore more EEG-fMRI studies should be encouraged,
with efforts also directed toward standardizing methods
for ICA-based EEG networks and their differentiation
between different behavioral states. For example, future
studies could be carried out to determine the functional
connectivity of theta or beta-power clustered ICs, com-
pared with networks demonstrated by previous fMRI
studies. Likewise, studies could be designed to reveal how
connectivities within/between RSNs vary with pharmaco-
logical intake or relate to brain-related pathologies, and to
clarify whether observed clustered IC patterns are equiva-
lent during altered brain states [e.g. for sleep: Tinguely
et al., 2006; for motion sickness: Chen et al., 2009].

CONCLUSIONS

In conclusion, this work demonstrates the feasibility and
addresses the potential of using a multistep, data-driven
approach for source-based EEG functional connectivity
analysis, based on the combined advantages of ICA,
source localization, graph theory, and multidimensional
scaling in order to reveal the spatiotemporal dynamics of
EEG changes from EC to EO states. Our results suggest
that cerebral processing underlying eyes-closed and eyes-
open baseline states consists of statistically clustered
groups within spatially and functionally related cortical
regions (frontal, central, parietal, occipitotemporal, and
occipital), clearly identified in two-dimensional and three-
dimensional space. From EC to EO resting states, and in
line with previous fMRI studies, graph analyses and MDS
plots indicated enhanced functional connectivity of frontal
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and parietal groups putatively subserved by the dorsal
attentional network (DAN) and default-mode network
(DMN); there was moreover a tight coupling of occipito-
temporal groups associated with processing in more ven-
tral areas, in keeping with the dichotomy of the dorsal/
ventral stream hypothesis of the visual information system
[Hilgetag et al., 2000; Salvador et al., 2005]. These results
suggest that two physiological mechanisms (ventral and
dorsal attention networks) functionally coexist during sim-
ple resting states such as EO fixation. Since resting-state
connectivity has been shown to correlate with behavioral
performance and cognitive measures in a host of pub-
lished studies [for a review, see Greicius et al., 2008], EEG
spectral-power based RSNs, resolved with ICA, may pro-
vide a useful measure with which to directly quantify neu-
ronal functional connectivity during resting state and/or
task-related conditions, in healthy subjects and those with
mental illness.

ACKNOWLEDGMENTS

This research was supported by grants from School of
Medicine, Chang Gung University & Department of Physi-
cal Medicine and Rehabilitation, Chang Gung Memorial
Hospital, Taiwan (CMRPG350813, CMRPG350814). Trevor
Thompson is thanked for helpful suggestions.

REFERENCES

Alper KR, John ER, Brodie J, Gunther W, Daruwala R, Prichep LS
(2006): Correlation of PET and qEEG in normal subjects. Psy-
chiatry Res 146:271–282.

Arieli A, Sterkin A, Grinvald A, Aertsen A (1996): Dynamics of
ongoing activity: Explanation of the large variability in evoked
cortical responses. Science 273:1868–1871.

Barry RJ, Clarke AR, Johnstone SJ, Brown CR (2009): EEG differ-
ences in children between eyes-closed and eyes-open resting
conditions. Clin Neurophysiol 120:1806–1811.

Barry RJ, Clarke AR, Johnstone SJ, Magee CA, Rushby JA (2007):
EEG differences between eyes-closed and eyes-open resting
conditions. Clin Neurophysiol 118:2765–2773.

Barry RJ, Rushby JA, Wallace MJ, Clarke AR, Johnstone SJ, Zloju-
tro I (2005): Caffeine effects on resting-state arousal. Clin Neu-
rophysiol 116:2693–2700.

Bell AJ, Sejnowski TJ (1995): An information-maximization
approach to blind separation and blind deconvolution. Neural
Comput 7:1129–1159.

Ben-Simon E, Podlipsky I, Arieli A, Zhdanov A, Hendler T (2008):
Never resting brain: Simultaneous representation of two alpha
related processes in humans. PloS one 3:e3984.

Bertrand O, Tallon-Baudry C (2000): Oscillatory gamma activity in
humans: A possible role for object representation. Int J Psycho-
physiol 38:211–223.

Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995): Functional
connectivity in the motor cortex of resting human brain using
echo-planar MRI. Magn Reson Med 34:537–541.

Buckner RL, Sepulcre J, Talukdar T, Krienen FM, Liu H, Hedden
T, Andrews-Hanna JR, Sperling RA, Johnson KA. (2009): Corti-
cal hubs revealed by intrinsic functional connectivity: Map-

ping, assessment of stability, and relation to Alzheimer’s
disease. J Neurosci 29:1860–1873.

Bullmore E, Sporns O (2009): Complex brain networks: Graph the-
oretical analysis of structural and functional systems. Nat Rev
Neurosci 10:186–198.

Brookes MJ, Gibson AM, Hall SD, Furlong PL, Barnes GR, Hille-
brand A, Singh KD, Holliday IE, Francis ST, Morris PG (2005):
GLM-beamformer method demonstrates stationary field, alpha
ERD and gamma ERS co-localisation with fMRI BOLD
response in visual cortex. Neuroimage 26:302–308.

Broyd SJ, Demanuele C, Debener S, Helps SK, James CJ, Sonuga-
Barke EJ (2009): Default-mode brain dysfunction in mental dis-
orders: A systematic review. Neurosci Biobehav Rev 33:279–296.

Buccino G, Binkofski F, Fink GR, Fadiga L, Fogassi L, Gallese V,
Seitz RJ, Zilles K, Rizzolatti G, Freund HJ (2001): Action obser-
vation activates premotor and parietal areas in a somatotopic
manner: An fMRI study. Eur J Neurosci 13:400–404.

Calhoun VD, Adali T, Pearlson GD, Pekar JJ (2001): A method for
making group inferences from functional MRI data using inde-
pendent component analysis. Hum Brain Mapp 14:140–151.

Calhoun VD, Adali T, Pekar JJ (2004): A method for comparing
group fMRI data using independent component analysis:
Application to visual, motor and visuomotor tasks. Magn
Reson Imaging 22:1181–1191.

Chen AC, Feng W, Zhao H, Yin Y, Wang P (2008): EEG default
mode network in the human brain: Spectral regional field
powers. Neuroimage 41:561–574.

Chen YC, Duann JR, Chuang SW, Lin CL, Ko LW, Jung TP, Lin
CT (2009): Spatial and temporal EEG dynamics of motion sick-
ness. Neuroimage 49:2862–2870.

Chorlian DB, Rangaswamy M, Porjesz B (2009): EEG coherence:
Topography and frequency structure. Exp Brain Res 198:59–83.

Comon P (1994): Independent component analysis: A new con-
cept. Signal Processing 36:287–314.

Congedo M, Gouy-Pailler C, Jutten C (2008): On the blind source
separation of human electroencephalogram by approximate
joint diagonalization of second order statistics. Clin Neurophy-
siol 119:2677–2686.

Congedo M, John RE, De Ridder D, Prichep L, Isenhart R (2010).
On the "dependence" of "independent" group EEG sources; an
EEG study on two large databases. Brain Topogr 23:134–138.

Corbetta M, Shulman GL (2002): Control of goal-directed and stimu-
lus-driven attention in the brain. Nat Rev Neurosci 3:201–215.

Damoiseaux JS, Beckmann CF, Arigita EJ, Barkhof F, Scheltens P,
Stam CJ, Smith SM, Rombouts SA (2008): Reduced resting-state
brain activity in the "default network" in normal aging. Cereb
Cortex 18:1856–1864.

Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith
SM, Beckmann CF (2006): Consistent resting-state networks
across healthy subjects. Proc Natl Acad Sci USA 103:13848–13853.

De Luca M, Beckmann CF, De Stefano N, Matthews PM, Smith
SM (2006): fMRI resting state networks define distinct modes
of long-distance interactions in the human brain. Neuroimage
29:1359–1367.

De Vico Fallani F, Astolfi L, Cincotti F, Mattia D, Tocci A, Mar-
ciani MG, Colosimo A, Salinari S, Gao S, Cichocki A, Babiloni F
(2007): Extracting information from cortical connectivity patterns
estimated from high resolution EEG recordings: A theoretical
graph approach. Brain Topogr 19:125–136.

Debener S, Ullsperger M, Siegel M, Engel AK (2006): Single-trial
EEG-fMRI reveals the dynamics of cognitive function. Trends
Cogn Sci 10:558–563.

r Chen et al. r

r 14 r



Dick DE, Vaughn AO (1970): Mathematical description and com-
puter detection of alpha waves. Math Biosci 7:81–95.

Dosenbach NU, Fair DA, Miezin FM, Cohen AL, Wenger KK,
Dosenbach RA, Fox MD, Snyder AZ, Vincent JL, Raichle ME,
Schlaggar BL, Petersen SE (2007): Distinct brain networks for
adaptive and stable task control in humans. Proc Natl Acad
Sci USA 104:11073–11078.

de Pasquale F, Della Penna S, Snyder AZ, Lewis C, Mantini D,
Marzetti L, Belardinelli P, Ciancetta L, Pizzella V, Romani GL,
et al. (2010): Temporal dynamics of spontaneous MEG activity
in brain networks. Proc Natl Acad Sci USA 107:6040–6045.

Egner T, Gruzelier JH (2001): Learned self-regulation of EEG fre-
quency components affects attention and event-related brain
potentials in humans. Neuroreport 12:4155–4159.

Egner T, Gruzelier JH (2004): EEG biofeedback of low beta band com-
ponents: Frequency-specific effects on variables of attention and
event-related brain potentials. Clin Neurophysiol 115:131–139.

Esposito F, Scarabino T, Hyvarinen A, Himberg J, Formisano E,
Comani S, Tedeschi G, Goebel R, Seifritz E, Di Salle F (2005):
Independent component analysis of fMRI group studies by
self-organizing clustering. Neuroimage 25:193–205.

Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC,
Raichle ME (2005): The human brain is intrinsically organized
into dynamic, anticorrelated functional networks. Proc Natl
Acad Sci USA 102:9673–9678.

Fransson P (2005): Spontaneous low-frequency BOLD signal fluc-
tuations: An fMRI investigation of the resting-state default
mode of brain function hypothesis. Hum Brain Mapp 26:15–29.

Fransson P (2006): How default is the default mode of brain func-
tion? Further evidence from intrinsic BOLD signal fluctuations.
Neuropsychologia 44:2836–2845.

Grin-Yatsenko VA, Baas I, Ponomarev VA, Kropotov JD (2010): In-
dependent component approach to the analysis of EEG record-
ings at early stages of depressive disorders. Clin Neurophysiol
121:281–289.

Gobbele R, Waberski TD, Simon H, Peters E, Klostermann F,
Curio G, Buchner H (2004): Different origins of low- and high-
frequency components (600 Hz) of human somatosensory
evoked potentials. Clin Neurophysiol 115:927–937.

Goldman RI, Stern JM, Engel J Jr, Cohen MS (2002): Simultaneous
EEG and fMRI of the alpha rhythm. Neuroreport 13:2487–2492.

Gollo LL, Mirasso CR, Atienza M, Crespo-Garcia M, Cantero JL
(2011): Theta band zero-lag long-range cortical synchronization
via hippocampal dynamical relaying. PloS One 6:e17756.

Gomez-Herrero G, Atienza M, Egiazarian K, Cantero JL (2008):
Measuring directional coupling between EEG sources. Neuro-
image 43:497–508.

Goncharova II, McFarland DJ, Vaughan TM, Wolpaw JR (2003):
EMG contamination of EEG: Spectral and topographical char-
acteristics. Clin Neurophysiol 114:1580–1593.

Grech R, Cassar T, Muscat J, Camilleri KP, Fabri SG, Zervakis M,
Xanthopoulos P, Sakkalis V, Vanrumste B (2008): Review on
solving the inverse problem in EEG source analysis. J Neuro-
eng Rehabil 5:25.

Greicius M (2008): Resting-state functional connectivity in neuro-
psychiatric disorders. Curr Opin Neurol 21:424–430.

Greicius MD, Krasnow B, Reiss AL, Menon V (2003): Functional
connectivity in the resting brain: A network analysis of the
default mode hypothesis. Proc Natl Acad Sci USA 100:253–258.

Grin-Yatsenko VA, Baas I, Ponomarev VA, Kropotov JD (2010): In-
dependent component approach to the analysis of EEG record-
ings at early stages of depressive disorders. Clin Neurophysiol
121:281–289.

Gruzelier J, Egner T, Vernon D (2006): Validating the efficacy of
neurofeedback for optimising performance. Prog Brain Res
159:421–431.

Gusnard DA, Akbudak E, Shulman GL, Raichle ME (2001): Medial
prefrontal cortex and self-referential mental activity: Relation
to a default mode of brain function. Proc Natl Acad Sci USA
98:4259–4264.

Gusnard DA, Raichle ME (2001): Searching for a baseline: Func-
tional imaging and the resting human brain. Nat Rev Neurosci
2:685–694.

Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ,
Wedeen VJ, Sporns O (2008): Mapping the structural core of
human cerebral cortex. PLoS Biol 6:e159.

Hamzei F, Dettmers C, Rijntjes M, Glauche V, Kiebel S, Weber B,
Weiller C (2002): Visuomotor control within a distributed pari-
eto-frontal network. Exp Brain Res 146:273–281.

Hilgetag CC, Burns GA, O’Neill MA, Scannell JW, Young MP
(2000): Anatomical connectivity defines the organization of
clusters of cortical areas in the macaque monkey and the cat.
Philos Trans R Soc Lond B Biol Sci 355:91–110.

Hoedlmoser K, Pecherstorfer T, Gruber G, Anderer P, Doppel-
mayr M, Klimesch W, Schabus M (2008): Instrumental condi-
tioning of human sensorimotor rhythm (12–15 Hz) and its
impact on sleep as well as declarative learning. Sleep 31:1401–
1408.

Honey CJ, Kotter R, Breakspear M, Sporns O (2007): Network
structure of cerebral cortex shapes functional connectivity on
multiple time scales. Proc Natl Acad Sci USA 104:10240–10245.

Honey CJ, Sporns O, Cammoun L, Gigandet X, Thiran JP, Meuli
R, Hagmann P (2009): Predicting human resting-state func-
tional connectivity from structural connectivity. Proc Natl
Acad Sci USA 106:2035–2040.

Hutsler J, Galuske, RAW (2003): Hemispheric asymmetries in cer-
ebral cortical networks. Trends Neurosci 26:429–435.

Hyvarinen A, Oja E (2000): Independent component analysis:
Algorithms and applications. Neural Netw 13:411–430.

Hyvarinen A, Ramkumar P, Parkkonen L, Hari R (2010): Inde-
pendent component analysis of short-time Fourier transforms
for spontaneous EEG/MEG analysis. Neuroimage 49:257–271.

Innocenti GM (1994): Some new trends in the study of the corpus
callosum. Behav Brain Res 64:1–8.

Isaichev SA, Derevyankin VT, Koptelov Yu M, Sokolov EN (2001):
Rhythmic alpha-activity generators in the human EEG. Neuro-
sci Behav Physiol 31:49–53.

James CJ, Hesse CW (2005): Independent component analysis for
biomedical signals. Physiol Meas 26:R15–R39.

Jann K, Dierks T, Boesch C, Kottlow M, Strik W, Koenig T (2009):
BOLD correlates of EEG alpha phase-locking and the fMRI
default mode network. Neuroimage 45:903–916.

Jung TP, Makeig S, Westerfield M, Townsend J, Courchesne E,
Sejnowski TJ (2000): Removal of eye activity artifacts from vis-
ual event-related potentials in normal and clinical subjects.
Clin Neurophysiol 111:1745–1758.

Jung TP, Makeig S, Mckeown MJ, Bell AJ, Lee TW, Sejnowski TJ
(2001): Imaging brain dynamics using independent component
analysis. Proc IEEE 89:1107–1122.

Kilner JM, Mattout J, Henson R, Friston KJ (2005): Hemodynamic
correlates of EEG: A heuristic. Neuroimage 28:280–286.

Kiviniemi V, Starck T, Remes J, Long X, Nikkinen J, Haapea M,
Veijola J, Moilanen I, Isohanni M, Zang YF, Tervonen O (2009):
Functional segmentation of the brain cortex using high model
order group PICA. Hum Brain Mapp 30:3865–3886.

r ICA-Derived EEG Functional Connectivity r

r 15 r



Klimesch W (1999): EEG alpha and theta oscillations reflect cogni-
tive and memory performance: A review and analysis. Brain
Res Brain Res Rev 29:169–195.

Klimesch W, Doppelmayr M, Rohm D, Pollhuber D, Stadler W
(2000): Simultaneous desynchronization and synchronization
of different alpha responses in the human electroencephalo-
graph: A neglected paradox? Neurosci Lett 284:97–100.

Klimesch W, Sauseng P, Hanslmayr S (2007): EEG alpha oscilla-
tions: The inhibition-timing hypothesis. Brain Res Rev 53:63–88.

Lachaux JP, Fonlupt P, Kahane P, Minotti L, Hoffmann D, Bertrand
O, Baciu M (2007): Relationship between task-related gamma
oscillations and BOLD signal: New insights from combined
fMRI and intracranial EEG. Hum Brain Mapp 28:1368–1375.

Laufs H (2008): Endogenous brain oscillations and related net-
works detected by surface EEG-combined fMRI. Hum Brain
Mapp 29:762–769.

Laufs H, Daunizeau J, Carmichael DW, Kleinschmidt A (2008): Recent
advances in recording electrophysiological data simultaneously
with magnetic resonance imaging. Neuroimage 40:515–528.

Laufs H, Hamandi K, Walker MC, Scott C, Smith S, Duncan JS,
Lemieux L (2006): EEG-fMRI mapping of asymmetrical delta
activity in a patient with refractory epilepsy is concordant
with the epileptogenic region determined by intracranial EEG.
Magn Reson Imaging 24:367–371.

Laufs H, Kleinschmidt A, Beyerle A, Eger E, Salek-Haddadi A,
Preibisch C, Krakow K (2003a): EEG-correlated fMRI of human
alpha activity. Neuroimage 19:1463–1476.

Laufs H, Krakow K, Sterzer P, Eger E, Beyerle A, Salek-Haddadi
A, Kleinschmidt A (2003b): Electroencephalographic signatures
of attentional and cognitive default modes in spontaneous
brain activity fluctuations at rest. Proc Natl Acad Sci USA
100:11053–11058.

Lin CT, Wu RC, Liang SF, Chao WH, Chen YJ, Jung TP (2005):
EEG-based drowsiness estimation for safety driving using in-
dependent component analysis. IEEE Trans Circuits Syst 52:12.

Lowe MJ, Mock BJ, Sorenson JA (1998): Functional connectivity in
single and multislice echoplanar imaging using resting-state
fluctuations. Neuroimage 7:119–132.

Lu H, Zuo Y, Gu H, Waltz JA, Zhan W, Scholl CA, Rea W, Yang
Y, Stein EA (2007): Synchronized delta oscillations correlate
with the resting-state functional MRI signal. Proc Natl Acad
Sci USA 104:18265–18269.

Makeig S, Bell AJ, Jung TP, Sejnowski B (1996): Independent com-
ponent analysis of electroencephalographic data. Adv Neural
Inf Process Syst 8:145–151.

Makeig S, Delorme A, Westerfield M, Jung TP, Townsend J,
Courchesne E, Sejnowski TJ (2004): Electroencephalographic
brain dynamics following manually responded visual targets.
PLoS Biol 2:e176.

Makeig S, Jung TP, Bell AJ, Ghahremani D, Sejnowski TJ (1997): Blind
separation of auditory event-related brain responses into inde-
pendent components. Proc Natl Acad Sci USA 94:10979–10984.

Makeig S, Westerfield M, Jung TP, Covington J, Townsend J, Sej-
nowski TJ, Courchesne E (1999): Functionally independent
components of the late positive event-related potential during
visual spatial attention. J Neurosci 19:2665–2680.

Makeig S, Westerfield M, Jung TP, Enghoff S, Townsend J,
Courchesne E, Sejnowski TJ (2002): Dynamic brain sources of
visual evoked responses. Science 295:690–694.

Mantini D, Perrucci MG, Del Gratta C, Romani GL, Corbetta M
(2007): Electrophysiological signatures of resting state net-
works in the human brain. Proc Natl Acad Sci USA 104:
13170–13175.

Marco-Pallares J, Grau C, Ruffini G (2005): Combined ICA-LOR-
ETA analysis of mismatch negativity. Neuroimage 25:471–477.

Marx E, Deutschlander A, Stephan T, Dieterich M, Wiesmann M,
Brandt T (2004): Eyes open and eyes closed as rest conditions:
Impact on brain activation patterns. Neuroimage 21:1818–1824.

Marx E, Stephan T, Nolte A, Deutschlander A, Seelos KC, Dieter-
ich M, Brandt T (2003): Eye closure in darkness animates sen-
sory systems. Neuroimage 19:924–934.

Meltzer JA, Negishi M, Mayes LC, Constable RT (2007): Individ-
ual differences in EEG theta and alpha dynamics during work-
ing memory correlate with fMRI responses across subjects.
Clin Neurophysiol 118:2419–2436.

Miwakeichi F, Martinez-Montes E, Valdes-Sosa PA, Nishiyama N,
Mizuhara H, Yamaguchi Y (2004): Decomposing EEG data into
space-time-frequency components using Parallel Factor Analy-
sis. Neuroimage 22:1035–1045.

Mizuhara H, Wang LQ, Kobayashi K, Yamaguchi Y (2004): A
long-range cortical network emerging with theta oscillation in
a mental task. Neuroreport 15:1233–1238.

Neuper C, Pfurtscheller G (1992): [Event-related negativity and
alpha band desynchronization in motor reactions]. EEG EMG
Z Elektroenzephalogr Elektromyogr Verwandte Geb 23:55–61.

Neuper C, Wortz M, Pfurtscheller G (2006): ERD/ERS patterns
reflecting sensorimotor activation and deactivation. Prog Brain
Res 159:211–222.

Niessing J, Ebisch B, Schmidt KE, Niessing M, Singer W, Galuske
RA (2005): Hemodynamic signals correlate tightly with
synchronized gamma oscillations. Science 309:948–951.

Nunez PL (1987): Removal of reference electrode and volume con-
duction effects by spatial deconvolution of evoked potentials
using a three-concentric sphere model of the head. Electroence-
phalogr Clin Neurophysiol Suppl 39:143–148.

Nunez PL, Silberstein RB (2000): On the relationship of synaptic
activity to macroscopic measurements: Does co-registration of
EEG with fMRI make sense? Brain Topogr 13:79–96.

Nunez PL, Srinivasan R (2006): A theoretical basis for standing and trav-
eling brain waves measured with human EEGwith implications for
an integrated consciousness. ClinNeurophysiol 117:2424–2435.

Nunez PL, Srinivasan R, Westdorp AF, Wijesinghe RS, Tucker
DM, Silberstein RB, Cadusch PJ (1997): EEG coherency. I: Sta-
tistics, reference electrode, volume conduction, Laplacians,
cortical imaging, and interpretation at multiple scales. Electro-
encephalogr Clin Neurophysiol 103:499–515.

Nuwer MR, Lehmann D, da Silva FL, Matsuoka S, Sutherling W,
Vibert JF (1999): IFCN guidelines for topographic and fre-
quency analysis of EEGs and EPs. The International Federation
of Clinical Neurophysiology. Electroencephalogr Clin Neuro-
physiol Suppl 52:15–20.

Oishi N, Mima T, Ishii K, Bushara KO, Hiraoka T, Ueki Y,
Fukuyama H, Hallett M (2007): Neural correlates of regional
EEG power change. Neuroimage 36:1301–1312.

Onton J, Westerfield M, Townsend J, Makeig S (2006): Imaging
human EEG dynamics using independent component analysis.
Neurosci Biobehav Rev 30:808–822.

Pascual-Marqui RD, Esslen M, Kochi K, Lehmann D (2002): Func-
tional imaging with low-resolution brain electromagnetic to-
mography (LORETA): A review. Methods Find Exp Clin
Pharmacol 24(Suppl C):91–95.

Pfurtscheller G, Flotzinger D, Mohl W, Peltoranta M (1992): Pre-
diction of the side of hand movements from single-trial multi-
channel EEG data using neural networks. Electroencephalogr
Clin Neurophysiol 82:313–315.

r Chen et al. r

r 16 r



Pfurtscheller G, Neuper C, Krausz G (2000): Functional dissocia-
tion of lower and upper frequency mu rhythms in relation to
voluntary limb movement. Clin Neurophysiol 111:1873–1879.

Pfurtscheller G, Stancak A Jr, Neuper C (1996): Event-related syn-
chronization (ERS) in the alpha band--An electrophysiological
correlate of cortical idling: a review. Int J Psychophysiol 24:
39–46.

Pineda JA (2005): The functional significance of mu rhythms:
translating seeing and hearing into doing. Brain Res Brain Res
Rev 50:57–68.

Pollen DA, Trachtenberg MC (1972): Some problems of occipital
alpha block in man. Brain Res 41:303–314.

Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA,
Shulman GL (2001): A default mode of brain function. Proc
Natl Acad Sci USA 98:676–682.

Raichle ME, Snyder AZ (2007): A default mode of brain function:
A brief history of an evolving idea. Neuroimage 37:1083–1090;
discussion 1097–1089.

Roelfsema PR, Engel AK, König P, Singer W (1997): Visuomotor
integration is associated with zero time-lag synchronization
among cortical areas. Nature 385:157–161.

Rosas HD, Lee SY, Bender AC, Zaleta AK, Vangel M, Yu P, Fischl
B, Pappu V (2010): Altered white matter microstructure in the
corpus callosum in Huntington’s disease: Implications for cort-
ical. Neuroimage 49:2995–3004.

Rubinov M, Sporns O (2010): Complex network measures of brain
connectivity: Uses and interpretations. Neuroimage 52:1059–1069.

Salvador R, Suckling J, Coleman MR, Pickard JD, Menon D, Bull-
more E (2005): Neurophysiological architecture of functional
magnetic resonance images of human brain. Cereb Cortex
15:1332–1342.

Scheeringa R, Bastiaansen MC, Petersson KM, Oostenveld R, Nor-
ris DG, Hagoort P (2008): Frontal theta EEG activity correlates
negatively with the default mode network in resting state. Int J
Psychophysiol 67:242–251.

Schmithorst VJ, Holland SK (2004): Comparison of three methods
for generating group statistical inferences from independent
component analysis of functional magnetic resonance imaging
data. J Magn Reson Imaging 19:365–368.

Schurmann M, Basar E (1999): Alpha oscillations shed new light
on relation between EEG and single neurons. Neurosci Res
33:79–80.

Sereno MI, Pitzalis S, Martinez A (2001): Mapping of contralateral
space in retinotopic coordinates by a parietal cortical area in
humans. Science 294:1350–1354.

Shackman AJ, McMenamin BW, Slagter HA, Maxwell JS, Grei-
schar LL, Davidson RJ (2009): Electromyogenic artifacts and
electroencephalographic inferences. Brain Topogr 22:7–12.

Shulman GL, Fiez JA, Corbetta M, Buckner RL, Miezin FM,
Raichle ME, Petersen SE (1997): Common blood flow changes
across visual tasks: II. Decreases in cerebral cortex. J Cogn
Neurosci 9:648–663.

Sridharan D, Levitin DJ, Menon V (2008): A critical role for the
right fronto-insular cortex in switching between central-executive
and default-mode networks. Proc Natl Acad Sci USA 105:
12569–12574.

Stam CJ, Nolte G, Daffertshofer A (2007): Phase lag index: Assess-
ment of functional connectivity from multi channel EEG and

MEG with diminished bias from common sources. Hum Brain
Mapp 28:1178–1193.

Steriade M (2001): Impact of network activities on neuronal prop-
erties in corticothalamic systems. J Neurophysiol 86:1–39.

Steriade M (2006): Grouping of brain rhythms in corticothalamic
systems. Neuroscience 137:1087–1106.

Sun M (1997): An efficient algorithm for computing multishell
spherical volume conductor models in EEG dipole source
localization. IEEE Trans Biomed Eng 44:1243–1252.

Talairach J, Tournoux P (1988): Co-planar stereotaxic atlas of the
human brain. 3-Dimensional proportional system: An
approach to cerebral imaging. Stuttgart, New York: Georg
Thieme Verlag/Thieme Medical Publishers.

Tinguely G, Finelli LA, Landolt HP, Borbely AA, Achermann P
(2006): Functional EEG topography in sleep and waking: state-
dependent and state-independent features. Neuroimage
32:283–292.

Torgerson WS (1952): Multidimensional scaling: Theory and
method. Psychometrika 17:401–419.

Trujillo-Barreto NJ, Aubert-Vazquez E, Valdes-Sosa PA (2004):
Bayesian model averaging in EEG/MEG imaging. Neuroimage
21:1300–1319.

Tyvaert L, Levan P, Grova C, Dubeau F, Gotman J (2008): Effects
of fluctuating physiological rhythms during prolonged EEG-
fMRI studies. Clin Neurophysiol 119:2762–2774.

Uddin LQ, Kelly AM, Biswal BB, Xavier Castellanos F, Milham
MP (2009): Functional connectivity of default mode network
components: Correlation, anticorrelation, and causality. Hum
Brain Mapp 30:625–637.

Vanni S, Portin K, Virsu V, Hari R (1999): Mu rhythm modulation
during changes of visual percepts. Neuroscience 91:21–31.

Vigario R, Oja E (2000): Independence: a new criterion for the
analysis of the electromagnetic fields in the global brain? Neu-
ral Netw 13:891–907.

Viola FC, Thorne J, Edmonds B, Schneider T, Eichele T, Debener S
(2009): Semi-automatic identification of independent components
representing EEG artifact. Clin Neurophysiol 120:868–877.

Virji-Babul N, Cheung T, Weeks D, Herdman AT, Cheyne D
(2007): Magnetoencephalographic analysis of cortical activity in
adults with and without Down syndrome. J Intellect Disabil
Res 51:982–987.

van den Heuvel MP, Hulshoff Pol HE (2010): Exploring the brain
network: A review on resting-state fMRI functional connectiv-
ity. Eur Neuropsychopharmacol 20:519–534.

van de Ven VG, Formisano E, Prvulovic D, Roeder CH, Linden
DEJ (2004): Functional connectivity as revealed by spatial inde-
pendent component analysis of fMRI measurements during
rest. Hum Brain Mapp 22:165–178.

von Stein A, Chiang C, Konig P (2000): Top-down processing
mediated by interareal synchronization. Proc Natl Acad Sci
USA 97:14748–14753.

Winter WR, Nunez PL, Ding J, Srinivasan R (2007): Comparison of
the effect of volume conduction on EEG coherence with the effect
of field spread on MEG coherence. Stat Med 26:3946–3957.

Yan C, Liu D, He Y, Zou Q, Zhu C, Zuo X, Long X, Zang Y
(2009): Spontaneous brain activity in the default mode network
is sensitive to different resting-state conditions with limited
cognitive load. PLoS One 4:e5743.

r ICA-Derived EEG Functional Connectivity r

r 17 r


